

Hormones and the Endocrine System

PowerPoint[®] Lecture Presentations for

Eighth Edition Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

Overview: The Body's Long-Distance Regulators

- Animal hormones are chemical signals that are secreted into the circulatory system and communicate regulatory messages within the body
- Hormones reach all parts of the body, but only target cells are equipped to respond
- Insect metamorphosis is regulated by hormones

- Two systems coordinate communication throughout the body: the endocrine system and the nervous system
- The endocrine system secretes hormones that coordinate slower but longer-acting responses including reproduction, development, energy metabolism, growth, and behavior
- The nervous system conveys high-speed electrical signals along specialized cells called neurons; these signals regulate other cells

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Concept 45.1: Hormones and other signaling molecules bind to target receptors, triggering specific response pathways

- Chemical signals bind to receptor proteins on target cells
- Only target cells respond to the signal

Types of Secreted Signaling Molecules

- Secreted chemical signals include
 - Hormones
 - Local regulators
 - Neurotransmitters
 - Neurohormones
 - Pheromones

- Endocrine signals (hormones) are secreted into extracellular fluids and travel via the bloodstream
- Endocrine glands are ductless and secrete hormones directly into surrounding fluid
- Hormones mediate responses to environmental stimuli and regulate growth, development, and reproduction

Fig. 45-2

(a) Endocrine signaling

(b) Paracrine signaling

(c) Autocrine signaling

(d) Synaptic signaling

(e) Neuroendocrine signaling

 Exocrine glands have ducts and secrete substances onto body surfaces or into body cavities (for example, tear ducts)

- Local regulators are chemical signals that travel over short distances by diffusion
- Local regulators help regulate blood pressure, nervous system function, and reproduction
- Local regulators are divided into two types
 - Paracrine signals act on cells near the secreting cell
 - Autocrine signals act on the secreting cell itself

Fig. 45-2a

(a) Endocrine signaling

(b) Paracrine signaling

(c) Autocrine signaling

Neurotransmitters and Neurohormones

- Neurons (nerve cells) contact target cells at synapses
- At synapses, neurons often secrete chemical signals called neurotransmitters that diffuse a short distance to bind to receptors on the target cell
- Neurotransmitters play a role in sensation, memory, cognition, and movement

(d) Synaptic signaling

(e) Neuroendocrine signaling

 Neurohormones are a class of hormones that originate from neurons in the brain and diffuse through the bloodstream

- Pheromones are chemical signals that are released from the body and used to communicate with other individuals in the species
- Pheromones mark trails to food sources, warn of predators, and attract potential mates

- Three major classes of molecules function as hormones in vertebrates:
 - Polypeptides (proteins and peptides)
 - Amines derived from amino acids
 - Steroid hormones

- Lipid-soluble hormones (steroid hormones) pass easily through cell membranes, while water-soluble hormones (polypeptides and amines) do not
- The solubility of a hormone correlates with the location of receptors inside or on the surface of target cells

Hormone Receptor Location: *Scientific Inquiry*

- In the 1960s, researchers studied the accumulation of radioactive steroid hormones in rat tissue
- These hormones accumulated only in target cells that were responsive to the hormones
- These experiments led to the hypothesis that receptors for the steroid hormones are located inside the target cells
- Further studies have confirmed that receptors for lipid-soluble hormones such as steroids are located inside cells

- Researchers hypothesized that receptors for water-soluble hormones would be located on the cell surface
- They injected a water-soluble hormone into the tissues of frogs
- The hormone triggered a response only when it was allowed to bind to cell surface receptors
- This confirmed that water-soluble receptors were on the cell surface

Fig. 45-4

RESULTS

MSH injected into interstitial fluid (blue)

- Water and lipid soluble hormones differ in their paths through a body
- Water-soluble hormones are secreted by exocytosis, travel freely in the bloodstream, and bind to cell-surface receptors
- Lipid-soluble hormones diffuse across cell membranes, travel in the bloodstream bound to transport proteins, and diffuse through the membrane of target cells

- Signaling by any of these hormones involves three key events:
 - Reception
 - Signal transduction
 - Response

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Pathway for Water-Soluble Hormones

 Binding of a hormone to its receptor initiates a signal transduction pathway leading to responses in the cytoplasm, enzyme activation, or a change in gene expression

Animation: Water-Soluble Hormone

- The hormone epinephrine has multiple effects in mediating the body's response to short-term stress
- Epinephrine binds to receptors on the plasma membrane of liver cells
- This triggers the release of messenger molecules that activate enzymes and result in the release of glucose into the bloodstream

Pathway for Lipid-Soluble Hormones

- The response to a lipid-soluble hormone is usually a change in gene expression
- Steroids, thyroid hormones, and the hormonal form of vitamin D enter target cells and bind to protein receptors in the cytoplasm or nucleus
- Protein-receptor complexes then act as transcription factors in the nucleus, regulating transcription of specific genes

Animation: Lipid-Soluble Hormone

Fig. 45-7-1

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Fig. 45-7-2

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- The same hormone may have different effects on target cells that have
 - Different receptors for the hormone
 - Different signal transduction pathways
 - Different proteins for carrying out the response
- A hormone can also have different effects in different species

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- In paracrine signaling, nonhormonal chemical signals called local regulators elicit responses in nearby target cells
- Types of local regulators:
 - Cytokines and growth factors
 - Nitric oxide (NO)
 - Prostaglandins

 Prostaglandins help regulate aggregation of platelets, an early step in formation of blood clots **Concept 45.2: Negative feedback and antagonistic hormone pairs are common features of the endocrine system**

 Hormones are assembled into regulatory pathways

Simple Hormone Pathways

 Hormones are released from an endocrine cell, travel through the bloodstream, and interact with the receptor or a target cell to cause a physiological response Fig. 45-11

Pathway

Example

S cells of duodenum secrete secretin (•)

- A negative feedback loop inhibits a response by reducing the initial stimulus
- Negative feedback regulates many hormonal pathways involved in homeostasis

Insulin and Glucagon: Control of Blood Glucose

- Insulin and glucagon are antagonistic hormones that help maintain glucose homeostasis
- The pancreas has clusters of endocrine cells called islets of Langerhans with alpha cells that produce glucagon and beta cells that produce insulin

Target Tissues for Insulin and Glucagon

- Insulin reduces blood glucose levels by
 - Promoting the cellular uptake of glucose
 - Slowing glycogen breakdown in the liver
 - Promoting fat storage

- Glucagon increases blood glucose levels by
 - Stimulating conversion of glycogen to glucose in the liver
 - Stimulating breakdown of fat and protein into glucose

- **Diabetes mellitus** is perhaps the best-known endocrine disorder
- It is caused by a deficiency of insulin or a decreased response to insulin in target tissues
- It is marked by elevated blood glucose levels

- Type I diabetes mellitus (insulin-dependent) is an autoimmune disorder in which the immune system destroys pancreatic beta cells
- Type II diabetes mellitus (non-insulindependent) involves insulin deficiency or reduced response of target cells due to change in insulin receptors

Concept 45.3: The endocrine and nervous systems act individually and together in regulating animal physiology

Signals from the nervous system initiate and regulate endocrine signals

Coordination of Endocrine and Nervous Systems in Invertebrates

- In insects, molting and development are controlled by a combination of hormones:
 - A brain hormone stimulates release of ecdysone from the prothoracic glands
 - Juvenile hormone promotes retention of larval characteristics
 - Ecdysone promotes molting (in the presence of juvenile hormone) and development (in the absence of juvenile hormone) of adult characteristics

Coordination of Endocrine and Nervous Systems in Vertebrates

- The hypothalamus receives information from the nervous system and initiates responses through the endocrine system
- Attached to the hypothalamus is the **pituitary** gland composed of the posterior pituitary and anterior pituitary

- The **posterior pituitary** stores and secretes hormones that are made in the hypothalamus
- The anterior pituitary makes and releases hormones under regulation of the hypothalamus

Table 45-1

Table 45.1 Major Human Endocrine Glands and Some of Their Hormones						
Gland		Hormone	Chemical Class	Representative Actions	Regulated By	
Hypothalamus	S	Hormones released from the posterior pituitary and hormones that regulate the anterior pituitary (see below)				
Posterior pituitary gland (releases neurohormones made in hypothalamus)	X.	Oxytocin	Peptide	Stimulates contraction of uterus and mammary gland cells	Nervous system	
		Antidiuretic hormone (ADH)	Peptide	Promotes retention of water by kidneys	Water/salt balance	
Anterior pituitary gland	X	Growth hormone (GH)	Protein	Stimulates growth (especially bones) and metabolic functions	Hypothalamic hormones	
		Prolactin (PRL)	Protein	Stimulates milk production and secretion	Hypothalamic hormones	
		Follicle-stimulating hormone (FSH)	Glycoprotein	Stimulates production of ova and sperm	Hypothalamic hormones	
		Luteinizing hormone (LH)	Glycoprotein	Stimulates ovaries and testes	Hypothalamic hormones	
		Thyroid-stimulating hormone (TSH)	Glycoprotein	Stimulates thyroid gland	Hypothalamic hormones	
		Adrenocorticotropic hormone (ACTH)	Peptide	Stimulates adrenal cortex to secrete glucocorticoids	Hypothalamic hormones	
Thyroid gland	A.A	Triiodothyronine (T_3) and thyroxine (T_4)	Amine	Stimulate and maintain metabolic processes	TSH	
		Calcitonin	Peptide	Lowers blood calcium level	Calcium in blood	
Parathyroid glands		Parathyroid hormone (PTH)	Peptide	Raises blood calcium level	Calcium in blood	

Table 45.1 Major Human Endocrine Glands and Some of Their Hormones					
Gland		Hormone	Chemical Class	Representative Actions	Regulated By
Pancreas	AT ALL STORE	Insulin	Protein	Lowers blood glucose level	Glucose in blood
	1 m	Glucagon	Protein	Raises blood glucose level	Glucose in blood
Adrenal glands Adrenal medulla	Ĉ D	Epinephrine and norepinephrine	Amines	Raise blood glucose level; increase metabolic activities; constrict certain blood vessels	Nervous system
Adrenal cortex		Glucocorticoids	Steroid	Raise blood glucose level	ACTH
		Mineralocorticoids	Steroid	Promote reabsorption of Na ⁺ and excretion of K ⁺ in kidneys	K ⁺ in blood; angiotensin II
Gonads	0				
Testes		Androgens	Steroid	Support sperm formation; promote development and maintenance of male secondary sex characteristics	FSH and LH
Ovaries	N.	Estrogens	Steroid	Stimulate uterine lining growth; promote development and maintenance of female secondary sex characteristics	FSH and LH
		Progestins	Steroid	Promote uterine lining growth	FSH and LH
Pineal gland		Melatonin	Amine	Involved in biological rhythms	Light/dark cycles

and)

Table 45.1 Major Human Endocrine Glands and Some of Their Hormones					
Gland		Hormone	Chemical Class	Representative Actions	Regulated By
Hypothalamus	S	Hormones released from the pos hormones that regulate the anter	terior pituitary and or pituitary (see below)		
Posterior pituitary gland (releases neurohormones made in hypothalamus)	S	Oxytocin	Peptide	Stimulates contraction of uterus and mammary gland cells	Nervous system
		Antidiuretic hormone (ADH)	Peptide	Promotes retention of water by kidneys	Water/salt balance
Anterior pituitary gland	50	Growth hormone (GH)	Protein	Stimulates growth (especially bones) and metabolic functions	Hypothalamic hormones
		Prolactin (PRL)	Protein	Stimulates milk production and secretion	Hypothalamic hormones
		Follicle-stimulating hormone (FSH)	Glycoprotein	Stimulates production of ova and sperm	Hypothalamic hormones
		Luteinizing hormone (LH)	Glycoprotein	Stimulates ovaries and testes	Hypothalamic hormones
		Thyroid-stimulating hormone (TSH)	Glycoprotein	Stimulates thyroid gland	Hypothalamic hormones
		Adrenocorticotropic hormone (ACTH)	Peptide	Stimulates adrenal cortex to secrete glucocorticoids	Hypothalamic hormones

Table 45.1 Major Human Endocrine Glands and Some of Their Hormones					
Gland		Hormone	Chemical Class	Representative Actions	Regulated By
Thyroid gland		Triiodothyronine (T_3) and thyroxine (T_4)	Amine	Stimulate and maintain metabolic processes	TSH
	CHARLES .	Calcitonin	Peptide	Lowers blood calcium level	Calcium in blood
Parathyroid glands		Parathyroid hormone (PTH)	Peptide	Raises blood calcium level	Calcium in blood
Pancreas	Insulin	Protein	Lowers blood glucose level	Glucose in blood	
	1 million	Glucagon	Protein	Raises blood glucose level	Glucose in blood
Adrenal glands Adrenal medulla	C D	Epinephrine and norepinephrine	Amines	Raise blood glucose level; increase metabolic activities; constrict certain blood vessels	Nervous system
Adrenal cortex		Glucocorticoids Mineralocorticoids	Steroid Steroid	Raise blood glucose level Promote reabsorption of Na ⁺ and excretion of K ⁺ in kidneys	ACTH K ⁺ in blood; angiotensin II

a sector a sector a

Table 45.1 Major Human Endocrine Glands and Some of Their Hormones

Gland	Hormone	Chemical Class	Representative Actions	Regulated By
Gonads	7			
Testes	Androgens	Steroid	Support sperm formation; promote development and maintenance of male secondary sex characteristics	FSH and LH
Ovaries	Estrogens	Steroid	Stimulate uterine lining growth; promote development and maintenance of female secondary sex characteristics	FSH and LH
	Progestins	Steroid	Promote uterine lining growth	FSH and LH
Pineal gland	Melatonin	Amine	Involved in biological rhythms	Light/dark cycles

Posterior Pituitary Hormones

• The two hormones released from the posterior pituitary act directly on nonendocrine tissues

- Oxytocin induces uterine contractions and the release of milk
- Suckling sends a message to the hypothalamus via the nervous system to release oxytocin, which further stimulates the milk glands
- This is an example of **positive feedback**, where the stimulus leads to an even greater response
- Antidiuretic hormone (ADH) enhances water reabsorption in the kidneys

- Hormone production in the anterior pituitary is controlled by releasing and inhibiting hormones from the hypothalamus
- For example, the production of *thyrotropin releasing hormone* (*TRH*) in the hypothalamus stimulates secretion of the *thyroid stimulating hormone* (*TSH*) from the anterior pituitary

Fig. 45-17

HORMONE

TARGET

Tropic effects only: FSH LH TSH ACTH Nontropic effects only: Prolactin MSH

Nontropic and tropic effects: GH

- A hormone can stimulate the release of a series of other hormones, the last of which activates a nonendocrine target cell; this is called a hormone cascade pathway
- The release of thyroid hormone results from a hormone cascade pathway involving the hypothalamus, anterior pituitary, and thyroid gland
- Hormone cascade pathways are usually regulated by negative feedback

Pathway

Example

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- A tropic hormone regulates the function of endocrine cells or glands
- The four strictly tropic hormones are
 - Thyroid-stimulating hormone (TSH)
 - Follicle-stimulating hormone (FSH)
 - Luteinizing hormone (LH)
 - Adrenocorticotropic hormone (ACTH)

- Nontropic hormones target nonendocrine tissues
- Nontropic hormones produced by the anterior pituitary are
 - Prolactin (PRL)
 - Melanocyte-stimulating hormone (MSH)

- Prolactin stimulates lactation in mammals but has diverse effects in different vertebrates
- MSH influences skin pigmentation in some vertebrates and fat metabolism in mammals

- Growth hormone (GH) is secreted by the anterior pituitary gland and has tropic and nontropic actions
- It promotes growth directly and has diverse metabolic effects
- It stimulates production of growth factors
- An excess of GH can cause gigantism, while a lack of GH can cause dwarfism

Concept 45.4: Endocrine glands respond to diverse stimuli in regulating metabolism, homeostasis, development, and behavior

 Endocrine signaling regulates metabolism, homeostasis, development, and behavior

Thyroid Hormone: Control of Metabolism and Development

- The **thyroid gland** consists of two lobes on the ventral surface of the trachea
- It produces two iodine-containing hormones: triiodothyronine (T₃) and thyroxine (T₄)

- Thyroid hormones stimulate metabolism and influence development and maturation
- Hyperthyroidism, excessive secretion of thyroid hormones, causes high body temperature, weight loss, irritability, and high blood pressure
- Graves' disease is a form of hyperthyroidism in humans
- Hypothyroidism, low secretion of thyroid hormones, causes weight gain, lethargy, and intolerance to cold

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

 Proper thyroid function requires dietary iodine for hormone production

Parathyroid Hormone and Vitamin D: Control of Blood Calcium

- Two antagonistic hormones regulate the homeostasis of calcium (Ca²⁺) in the blood of mammals
 - Parathyroid hormone (PTH) is released by the parathyroid glands
 - Calcitonin is released by the thyroid gland

Fig. 45-20-1

- PTH increases the level of blood Ca²⁺
 - It releases Ca²⁺ from bone and stimulates reabsorption of Ca²⁺ in the kidneys
 - It also has an indirect effect, stimulating the kidneys to activate vitamin D, which promotes intestinal uptake of Ca²⁺ from food
- Calcitonin decreases the level of blood Ca²⁺
 - It stimulates Ca²⁺ deposition in bones and secretion by kidneys

Adrenal Hormones: Response to Stress

- The adrenal glands are adjacent to the kidneys
- Each adrenal gland actually consists of two glands: the adrenal medulla (inner portion) and adrenal cortex (outer portion)

Catecholamines from the Adrenal Medulla

- The adrenal medulla secretes epinephrine (adrenaline) and norepinephrine (noradrenaline)
- These hormones are members of a class of compounds called catecholamines
- They are secreted in response to stressactivated impulses from the nervous system
- They mediate various fight-or-flight responses

- Epinephrine and norepinephrine
 - Trigger the release of glucose and fatty acids into the blood
 - Increase oxygen delivery to body cells
 - Direct blood toward heart, brain, and skeletal muscles, and away from skin, digestive system, and kidneys
- The release of epinephrine and norepinephrine occurs in response to nerve signals from the hypothalamus

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

alertness and decreased digestive, excretory, and reproductive system activity

Steroid Hormones from the Adrenal Cortex

- The adrenal cortex releases a family of steroids called **corticosteroids** in response to stress
- These hormones are triggered by a hormone cascade pathway via the hypothalamus and anterior pituitary
- Humans produce two types of corticosteroids: glucocorticoids and mineralocorticoids

- **Glucocorticoids**, such as cortisol, influence glucose metabolism and the immune system
- Mineralocorticoids, such as aldosterone, affect salt and water balance
- The adrenal cortex also produces small amounts of steroid hormones that function as sex hormones

- The gonads, testes and ovaries, produce most of the sex hormones: androgens, estrogens, and progestins
- All three sex hormones are found in both males and females, but in different amounts

- The testes primarily synthesize androgens, mainly testosterone, which stimulate development and maintenance of the male reproductive system
- Testosterone causes an increase in muscle and bone mass and is often taken as a supplement to cause muscle growth, which carries health risks

RESULTS

	Appearance of Genitals	
Chromosome Set	No surgery	Embryonic gonad removed
XY (male)	Male	Female
XX (female)	Female	Female

- Estrogens, most importantly estradiol, are responsible for maintenance of the female reproductive system and the development of female secondary sex characteristics
- In mammals, progestins, which include progesterone, are primarily involved in preparing and maintaining the uterus
- Synthesis of the sex hormones is controlled by FSH and LH from the anterior pituitary

- The pineal gland, located in the brain, secretes melatonin
- Light/dark cycles control release of melatonin
- Primary functions of melatonin appear to relate to biological rhythms associated with reproduction

Fig. 45-UN2

Pathway

Example

Low blood glucose

Pancreas secretes glucagon (•)

Liver

Glycogen breakdown, glucose release into blood

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

You should now be able to:

- Distinguish between the following pairs of terms: hormones and local regulators, paracrine and autocrine signals
- 2. Describe the evidence that steroid hormones have intracellular receptors, while watersoluble hormones have cell-surface receptors
- Explain how the antagonistic hormones insulin and glucagon regulate carbohydrate metabolism
- 4. Distinguish between type 1 and type 2 diabetes

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- Explain how the hypothalamus and the pituitary glands interact and how they coordinate the endocrine system
- Explain the role of tropic hormones in coordinating endocrine signaling throughout the body
- List and describe the functions of hormones released by the following: anterior and posterior pituitary lobes, thyroid glands, parathyroid glands, adrenal medulla, adrenal cortex, gonads, pineal gland